
A Deep Multitask Learning Approach for Requirements
Discovery and Annotation from Open Forum

Mingyang Li1,3, Lin Shi1,3,∗, Ye Yang4, Qing Wang1,2,3
1Laboratory for Internet Software Technologies, 2State Key Laboratory of Computer Sciences,

Institute of Software Chinese Academy of Sciences, Beijing, China;
3University of Chinese Academy of Sciences, Beijing, China; ∗Corresponding author;

4Stevens Institute of Technology, Hoboken, NJ, USA;

mingyang@itechs.iscas.ac.cn,shilin@iscas.ac.cn,wq@iscas.ac.cn,yyang4@stevens.edu

ABSTRACT

The ability in rapidly learning and adapting to evolving user needs

is key to modern business successes. Existing methods are based

on text mining and machine learning techniques to analyze user

comments and feedback, and often constrained by heavy reliance

on manually codified rules or insufficient training data. Multitask

learning (MTL) is an effective approach with many successful ap-

plications, with the potential to address these limitations associ-

ated with requirements analysis tasks. In this paper, we propose a

deep MTL-based approach, DEMAR, to address these limitations

when discovering requirements from massive issue reports and

annotating the sentences in support of automated requirements

analysis. DEMAR consists of three main phases: (1) data augmenta-

tion phase, for data preparation and allowing data sharing beyond

single task learning; (2) model construction phase, for construct-

ing the MTL-based model for requirements discovery and require-

ments annotation tasks; and (3) model training phase, enabling

eavesdropping by shared loss function between the two related

tasks. Evaluation results from eight open-source projects show that,

the proposed multitask learning approach outperforms two state-

of-the-art approaches (CNC and FRA) and six common machine

learning algorithms, with the precision of 91% and the recall of 83%

for requirements discovery task, and the overall accuracy of 83%

for requirements annotation task. The proposed approach provides

a novel and effective way to jointly learn two related requirements

analysis tasks. We believe that it also sheds light on further di-

rections of exploring multitask learning in solving other software

engineering problems.

KEYWORDS

Requirements discovery, Requirements annotation, Multitask learn-

ing, Deep learning

ACM Reference Format:

Mingyang Li1,3, Lin Shi1,3,∗, Ye Yang4, Qing Wang1,2,3. 2020. A Deep Multi-

task Learning Approach for Requirements Discovery and Annotation from

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’20, September 21–25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416627

Open Forum. In 35th IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE ’20), September 21–25, 2020, Virtual Event, Australia.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3324884.3416627

1 INTRODUCTION

Modern applications become increasingly dependent on knowledge

learned from user community to improve and innovate services. In

general, such knowledge reveals how users discuss their experience

with a specific version/feature of the application, and propose feed-

back or new features. Dozens of data sources have been identified

and used for requirements discovery and analysis, including chat

messages, emails, forums, project digests, etc [48]. Such data sources

contain large amount of textual data. For example, Cleland-Huang

et al. reported that forums such as SourceForge and JIRA typically

consist of thousands of requirements [8], and Vlas et al. reported

that 16 projects from SourceForge average 146,716 words just in fea-

ture requests [63]. It would be an extremely labor-intensive process

for manual extraction of requirements. In addition, such textual doc-

uments are frequently noisy, consisting of trivial, non-requirements

information, such as social communications, slang, typos, etc [8].

Such noise needs to be appropriately handled in order to support

efficient and effective requirements discovery and analysis [50, 62].

Meanwhile, intensive approaches have been proposed to support

automatic requirements analysis from user comments and issue re-

ports, employing techniques such as text mining, machine learning,

social network analysis, and feedback mechanisms, etc.

For this study, we define two requirements analysis tasks, accord-

ing to the underlying problem addressed in existing studies. One is

requirements discovery (RD), which is a binary-classification task

for identifying whether a new document is a valid requirement. The

other is requirements annotation (RA), which is amulti-label classifi-

cation task for annotating the semantic categories of the sentence(s)

within a new document. Most existing RD and RA approaches are

rule-based or learning-based techniques to explore valuable user re-

quirements. Rule-based approaches rely heavily on a set of heuristic

rules pre-codified by human experts [9]. While, learning-based ap-

proaches employ the machine learning algorithms, such as Random

Forest [4] and convolution neural network [18], to train model for

future predictions.Two example rule-based RA approaches include

a fuzzy rule-based approach for annotating sentences in feature

requests [51], and an ontology-based approach consisting of six

levels of classification patterns [62].

There are four major limitations in existing approaches. First,

in the RD task, existing studies typically model documents using

bag-of-words [49] which vectorizes the texts under the assumption

336

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3324884.3416627&domain=pdf&date_stamp=2021-01-27

that the words are independent. It ignores the abundant semantic

information containing in requirements descriptions. Second, in

the RA task, manually-built rules are labor-intensive and difficult

to rebuilt across domains in practices. Third, some methods aim

at using supervised training instances on a single task, but un-

fortunately, they ignore the rich correlation information between

the tasks. Forth, the training data for RD and RA is often limited.

The issue reports in the repositories are typically large in size. But

only a few labeled ones are categorized into requirements types.

How to make the maximum use of the few labeled requirements

to accurately classify the unlabeled issues becomes an important

problem. To address these challenges, this study proposes to adopt

deep multitask learning (MTL) approach, which combines the deep

learning and MTL techniques, which has led to successes in many

applications of machine learning, from natural language process-

ing [55], speech recognition [42], to computer vision [70]. MTL is

a subfield of machine learning in which multiple learning tasks

are solved at the same time, while exploiting commonalities and

differences across tasks [44]. This can result in improved efficiency

and prediction accuracy, when compared to training the models

separately [6, 58, 72].

In this paper, we present a deep MTL-based approach, DEMAR

(DEep Multitask LeArning for Requirements Discovery and An-

notation), to automated support for RD and RA. DEMAR consists

of three main phases: (1) data augmentation phase, for data prepa-

ration and allowing data sharing beyond single task learning; (2)

model construction phase, for constructing the MTL-based model

for requirements discovery and requirements annotation; and (3)

model training phase, enabling eavesdropping by shared loss func-

tion between the two related tasks. Evaluation results from eight

open-source projects show that DEMAR outperforms two state-

of-the-art approaches (CNC and FRA) and six common machine

learning algorithms, with the precision of 91% , the recall of 83%

for RD task, and overall accuracy of 83% for RA task. Specifically,

by jointly learning the two tasks, the performance of the discovery

task increases 4% of F1, and the annotation task increases 8% of

accuracy. In summary, the key contributions of this paper are: 1)

DEMAR, a novel paradigm to support multitask learning with two

related requirements analysis tasks, including data augmentation,

MTL-based model construction, and MTL-based model training

phases. 2) A novel deep MTL-based model to enable sharing in-

formation through shared layers and task-specific layer for jointly

learning RD and RA tasks; 3) A demonstration of the power of MTL

in combination with deep learning for RD and RA tasks; 4) The

publicly accessible materials1 to facilitate its application in other

contexts.

2 BACKGROUND

This section introduces a motivational example, and the related

techniques used in our study.

2.1 A Motivational Example

In practices, a typical requirements process in online open-source

communities goes like the following. First, project contributors

1https://github.com/DEMAR-requirements/DEMAR

manually browse through the list of newly opened issues and as-

sign a “feature request” or “enhancement” label when discovering a

new requirement. This manual process is very labor-intensive and

time-consuming. The RD task aims at predicting whether a new

issue is a requirement or not, which can expedite the process of

issue labeling. Second, given a list of labeled issues or requirements,

Release team review, annotate, and integrate important sugges-

tions from a requirement to a future release. The RA task aims

at expediting the process of requirements understanding by pro-

viding semantic annotations at sentence level. Thus, the release

team members can obtain an initial understanding of the unstruc-

tured textual artifacts quickly. They could pay attentions to the

relevant information while ignoring the less important parts from

the submitted artifacts [51]. Figure 1 illustrates an example of the

two related RD and RA tasks on a set of newly opened, unlabeled

issue reports in Keras project from Github. The RD task focuses

on the entire issue report, and the output is true or false. Mean-

while, the RA task focuses on the sentences in each issue report,

and the output is a set of high-level annotations for each sentence,

characterizing whether each sentence depicts the intent, benefit,

example, explanation, drawback, or trivia aspect of a requirement.

Generally speaking, sentences with “intent” and “benefit” anno-

tations reflect more essential requirements, and sentences with

“trivia” annotations may be largely ignored. As shown in Figure 1,

the identified requirement from the RD task corresponds to seven

more sentence-level annotation labels produced from the RA task,

with the 2𝑛𝑑 and 6𝑡ℎ sentences highlighting the major intents of

this requirement.

Figure 1: An Example of RD and RA

As introduced earlier, existing RD and RA methods mostly em-

ploy rule-based or learning-based approaches to resolve these two

tasks independently. But unfortunately, they ignore the rich correla-

tion information between tasks and are often constrained by limited

amounts of training data. In fact, the RD task is related to the RA

task as they share the same inputs of the textual requirements, and

they have shared information relevant to prediction. Specifically,

the sequences of sentence annotations may comply with certain

patterns when expressing requirements, which can benefit RA task

of judging whether an issue report is requirement or not. Taken

the requirement in Figure 1 as an example, the user first writes

337

an intent-sentence to directly express a request, and then gives

some explanations as well as what the benefits the request could

deliver. Such “intent-explanation-benefit” pattern might largely

exist in requirements rather than in non-requirements like bug re-

ports. Conversely, the category information of an issue report may

also benefit to determining the annotations of its sentences. For

example, if an issue report is predicted as a requirement, it would

be more likely to contain “intent” annotation. If an issue report is

predicted as a non-requirement report, it would be more likely to

contain “drawback” and “current behavior” annotations. Taking all

the above into consideration, we make the first attempt to propose

an MTL-based approach that can jointly learn the two tasks, aiming

to improve learning efficiency and prediction accuracy for both

tasks.

2.2 Multitask Learning

Multitask learning (MTL) is a widely-used approach to inductive

transfer, which can be used in combination with machine learning

algorithms. Given𝑚 related learning tasks, MTL takes the correla-

tion information into consideration, and boosts the performance

of each task by sharing the knowledge contained in the𝑚 tasks

[7, 72]. It achieves this by learning multiple tasks in parallel while

using a shared representation between the related tasks to produce

models with better generality.

Figure 2: Paradigm of MTL with hard parameter sharing

In the context of supervised deep learning, there are two common

ways to perform MTL: hard parameter sharing and soft parameter

sharing of hidden layers. MTL with hard parameter sharing, as

illustrated in Figure 2, has been widely used in many applications

such as natural language processing [55], speech recognition [42],

and computer vision [70], etc. This paradigm consists of two parts

in constructing the network, i.e., shard presentation layer(s) and

task-specific layer(s). Through the shared representation layer(s),

the general hidden vectors for input could be obtained. The hidden

vectors are used as the input of the task-specific layer(s) for many

related tasks. After that, the shared information among tasks is

learned by optimizing the model parameters using joint loss. After

several iterations, the training stops until the model parameters

stabilize. Another paradigm is MTL with soft parameter sharing,

where each task has its own model with its own parameters. Since

the RA and RD tasks share the same inputs of the textual issue

reports, they are naturally suitable to the hard parameter mode

that sharing the same representation layer(s) and process multiple

tasks in the task-specific layer(s). Therefore, we choose the hard

parameter sharing to jointly learn the RD and RA tasks.

3 APPROACH

As shown in Figure 3, the proposed approach, DEMAR, consists

of three main phases: (1) data augmentation phase, for data prepa-

ration and allowing data sharing beyond single task learning; (2)

model construction phase, for constructing the MTL-based model

for requirements discovery and requirements annotation tasks; and

(3) model training phase, enabling eavesdropping by shared loss

function between the two related tasks. We will present details on

each of the three phases next.

3.1 Data Augmentation

In this step, each issue report will be introduced with augmented

information beyond the scope of single task learning.

3.1.1 Data Pre-processing. A typical issue report may contain

two types of information: textual content of the issue (i.e., title and

description), and embedded source information (e.g., code snippets,

patches, stack traces). In this study, we focus on the textual contents

to avoid noise associated with the embedded source information.

Specifically, the following steps are conducted to pre-process the

issue report data: (1) Retaining textual contents and exclude embed-

ded source information using a text-parsing tool [36]; (2) Splitting

issue description text into individual sentences; and (3) Applying

standard data cleaning pipeline including special character removal,

tokenization, and lowercase conversion. After data pre-processing,

each issue report, denoted as 𝐷 , is considered as an instance for the
learning tasks.

3.1.2 Instance Label Sharing. Designed based on supervised

learning, each issue report, 𝐷 , comes with ground truth labels

for RD and RA tasks, respectively. While RD task is a binary-

classification task (i.e., Yes/No), DEMAR also employs a set of seven

sentence categories for RA task, as summarized in Table 1. The first

six are adopted from on Shi et al.’s work [51], which are identified

from practice guidelines [66]. Other than the six categories, a new

category of “current behavior” is introduced, and highlighted in

bold in Table 1. The reason for this addition is that, while the ma-

jority of Shi et al’s categories and their fuzzy rules are still effective,

refinement on the explanation category is needed to highlight more

semantic meanings in requirements.

At the outset, DEMAR allows to share instance labels across

related tasks. Thus, the issue data is explicitly augmented in the

following two aspects:

• Augmented RD data. By sharing labels, the data used to

train the RD model is automatically augmented by including

additional information on each sentence. The original RD

data is the plain issue reports, and the augmented RD data

is the issue report with its sentences being tagged to one of

the seven categories in Table 1.

• Augmented RA data. Similarly, the data used to train the

RA model is augmented by adding the category information

of the issue report that each sentence belongs to.

338

Figure 3: An Overview of DEMAR

Table 1: Description of RA categories.

Category Definition

Intent (INT) Ideas or needs to improve system functionalities.

Benefit (BE) Results or effects if a proposed feature is deliver.

Drawback (DR) Disadvantages or negative aspects of the current system.

Example (EXA) Examples or references in support of a proposed feature.

Explanation (EXP) Detailed information about the proposed feature.

Trivia (TRI) Information not directly related to a feature or system.

Current Behavior (CB) The current behavior of a system.

3.2 Model Construction

As illustrated in Figure 3, the model construction phase starts with

a mini-batched sampling component, and a two-step MTL com-

ponent, i.e., shared layer learning and task-specific layer learning,

to train the MTL-based model. An elaborated architecture of the

MTL-based model is shown in Figure 4. There lower layers - the

sentence embedding layer and the context embedding layer- are

the globally shared layers for RD and RA tasks. The shared layers

take inputs from the mini-batched sampling component, and pro-

duce the hidden representation for each input sentence. Then, the

task-specific layer is to map the hidden representation into two

groups of outputs. Next, we introduce the details of this phase.

3.2.1 Mini-Batched Sampling. Mini-batching is a very popular

technique in machine learning, due to its ability to boost perfor-

mances and accelerate the training process [39]. Following this

convention, DEMAR employs mini-batched sampling in its training

process. Rather than sending one training instance into the model

at a time, DEMAR equally splits all the samples into batches with

the same size (batch_size). All the training samples are divided

into � 𝑛𝑢𝑚𝑏𝑒𝑟𝑠
𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 � batches, where 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 is the number of all the

training samples. More details on the tuning of the batch_size pa-

rameter will be presented in the later section (Section 3.3.2). For

one training iteration, each batch containing batch_size instances

is sent into the model for training, which could avoid the bias of a

single instance.

3.2.2 Shared Layer Learning. The shared layers consist of two

layer: (1) sentence embedding layer where DEMAR embeds each

sentence to a semantic vector; (2) context embedding layer where

DEMAR encodes the contextual information for each sentence.

Following introduces two layers in detail.

Sentence Embedding Layer : This layer aims to embed each sen-

tence into a semantic vector. For a given issue report, we denote all

sentences in it as [𝑠1, 𝑠2, ..., 𝑠𝑛] (𝑛 is the number of sentences in the
issue report). Traditionally, a sentence is vectorized using a vector

space model [47], and represented by the weighted words within

the sentence. In this way, the dimension of the sentence vector is

the vocabulary size. However, due to the large size of vocabulary,

it is very expensive to learn such kind of models. Unlike the tradi-

tional vector space model, DEMAR introduces a pre-trained BERT

model [19] to embed the sentence. The BERTmodel used in DEMAR

has been pre-trained on a large volume of natural language texts

(BooksCorpus [73] containing 800M words and English Wikipedia

Figure 4: The MTL-based model

339

containing 2,500M words), and has been successfully adopted in

many natural language process tasks such as text classification [32],

automatic question answering [20] and named entity recognition

[53]. Given a sentence, the BERT model returns the corresponding

sentence vector with the dimension of 768 (the default value in the

BERT model), which carries the semantic information. Please note

that there are different sizes of sentences in issue reports, which

leads to different lengths of instances. To ensure the consistency of

input length, DEMAR uses padding and truncation to align input

length, which is one of the common practices in deep learning [12].

Due to 90% sampled issue reports (see Section 4.2 for details) have

less than 10 sentences, we set the fixed input length 𝑛 as 10. If an
instance has less than 10 sentences, DEMAR adds zero vectors to

the end of the instance for padding. If it has more than 10 sentences,

DEMAR truncates the ending sentences.

Context Embedding Layer : The purpose is to encode the contex-

tual information of each sentence. Existing rule-based approaches

typically capture high-level contextual information and express

them using rules, derived based on direct observation from empiri-

cal data or expert experience. For example, if a sentence describes

an intent, the next sentence is likely to belong to the “benefit”. On

the contrary, for an issue report, if an “intent” is followed by “bene-

fit” sentence(s), it is likely a requirement. With the consideration,

we employ a Bi-LSTM layer to embed the contextual information

and enable richer information sharing in MTL. Given the semantic

vectors produced by the sentence embedding layer, the context

embedding layer learns and converts them into the corresponding

vector sequence [ℎ1, ℎ2, ℎ𝑛], where ℎ𝑖 is the hidden representa-
tion for the input sentence 𝑠𝑖 . The dimension of these hidden vector,
denoted as LSTM dimension, is a key hyper-parameter. More details

of tuning this hyper-parameter are presented in Section 3.3.2. The

shared hidden representation is used as the input for the following

task-specific layer learning.

3.2.3 Task-Specific Layer Learning. As shown in Figure 4, the

task-specific layer is to map the hidden vector representations

produced by the shared layers into two groups of classification

outputs, i.e., predictions for the RD and RA tasks respectively.

Classification for the RD task.As RD is a binary-classification task,

DEMAR employs an fully connected (FC) layer, which is popularly

used as the final layer in deep learning for classification tasks [24,

26, 71].The FC layer takes the hidden vector, i.e., [ℎ1, ℎ2, ..., ℎ𝑛] as
the input, and outputs 2-dimension vector corresponding to the

two values, indicating whether the issue report is a requirement or

not. Then, using the softmax function [75], DEMAR normalizes the

2-dimension vector into a probability score 𝑃 (𝑅 | 𝐷), and classify
whether the issue report 𝐷 is a requirement.

Classification for the RA task. As introduced earlier, RA is a multi-

label classification task to assign each sentence into the annotation

categories, as illustrated in Table 1. Similarly, DEMAR leverages

the FC layer to map each hidden representation into one of the

seven categories. The output of the FC layer is a vector [𝑃 (𝐴1 | 𝐷),
𝑃 (𝐴2 | 𝐷), ..., 𝑃 (𝐴𝑛 | 𝐷)], where 𝑃 (𝐴𝑖 | 𝐷) (1 ≤ 𝑖 ≤ 𝑛) is also a
vector of probability across all seven sentence categories for an

input sentence 𝑠𝑖 of the issue report𝐷 . The probability vector 𝑃 (𝐴𝑖 |

𝐷) is then processed through the softmax function to generate the
corresponding sentence labels of the issue report 𝐷 .

3.3 Model Training

3.3.1 Eavesdroppingby shared loss function. One of themain

advantages of MTL is that it allows the model to eavesdrop when

learning from related tasks. For the RD task, the loss is calculated

by the cross-entropy of using the following equation:

𝐿𝑜𝑠𝑠𝑅𝐷 = −𝑦𝑖 · log(𝑃 (𝑅 | 𝐷)) (1)

where 𝑦𝑖 is the ground-truth requirements label for each instance
𝐷 , and 𝑃 (𝑅 | 𝐷) is the predicted probability of the issue report
being a requirement.

Similarly, the loss of the RA task is calculated by the average

cross-entropy using the following equation:

𝐿𝑜𝑠𝑠𝑅𝐴 =
1

𝑁

𝑁∑

𝑗=1

−𝑦 𝑗 · log 𝑃 (𝐴 𝑗 | 𝐷) (2)

where 𝑁 is the number of sentences in the instance 𝐷 (covering

requirements and non-requirements issue reports), 𝑦 𝑗 is the true
sentence label of the sentence 𝑠 𝑗 , 𝑃 (𝐴 𝑗 | 𝐷) is the predicted classi-
fication of each sentence 𝑠 𝑗 . Then DEMAR employs a principled,

shared loss function to take the weighted sum of the two individual

losses, using the following equation:

𝐿𝑜𝑠𝑠 = 𝜆𝐿𝑜𝑠𝑠𝑅𝐷 + (1 − 𝜆)𝐿𝑜𝑠𝑠𝑅𝐴 (3)

where 𝜆 is harmonic parameter in the range (0, 1). In this study, the
hyper-parameter 𝜆 is determined by the automatic hyper-parameter
tuning introduced in Section 3.3.2. With the loss function, the train-

ing is conducted in an iterative manner. In each iteration, by sharing

the loss, one task could eavesdrop the information from the other,

and learn some features which are difficult to learn from itself but

easy from the other task.

Then, all mini-batches are fed into the model one by one, and the

loss is calculated using the loss function 𝐿𝑜𝑠𝑠 . Next, with the loss
𝐿𝑜𝑠𝑠 being back propagated through the model layers, the model
parameters in the task-specific layer and context embedding layer

are updated using the Stochastic Gradient Descent algorithm [41].

The training process repeats the above steps and stops if the loss

function does not decrease obviously on 10 consecutive batches.

3.3.2 Hyper-parameter tuning strategy. Previous studies have

shown that hyper-parameter tuning is important for a prediction

model to achieve better performance [10]. There are three hyper-

parameters in DEMAR, i.e., the dimension of the hidden vector

in MTL model (refer to Section 3.2.2), batch_size (refer to Sec-

tion 3.2.1), and the harmonic factor 𝜆 for the loss function (refer
to Section 3.3.1). DEMAR adopts a greedy strategy to tune these

hyper-parameters. Given 𝑛 hyper-parameters {𝑃1, 𝑃2, ..., 𝑃𝑛 } and the
corresponding 𝑛 sets of candidate tuning values {𝑉1,𝑉2, ...,𝑉𝑛 }, we
perform 𝑛 iterations of automated tuning. In each iteration, we

randomly select one 𝑃𝑖 without replacement, enumerate all its cor-
responding candidate values 𝑣 𝑗 in 𝑉𝑖 = {𝑣1, 𝑣2, ..., 𝑣𝑚}, choose the
relatively good performances, as the determined value of 𝑃𝑖 . More
details and results on hyper-parameter tuning will be presented in

Section 4.3.3 and Section 5.3, respectively.

4 EXPERIMENTAL DESIGN

This section describes the research questions, the subject dataset,

the designed experiments to be conducted, the baseline approaches,

340

and the metrics for performance measurement, in order to verify

the performance of the proposed DEMAR approach.

4.1 Research Questions

Three research questions are formulated as following:

RQ1: What are the benefits of DEMAR compared to sin-

gle task learning? This question aims at evaluating the effective-

ness of the multitask learning approach in requirements discovery

and annotation. Specifically, in order to investigate the benefits of

multitask learning approach, we conduct experiments to compare

DEMAR with its two single task modes, respectively.

RQ2: How does the performance of DEMAR compare to

existing approaches? This question aims at evaluating the advan-

tages of DEMAR. Specifically, we compare DEMAR with existing

state-of-the-art approaches, as well as a set of widely-adopted ma-

chine learning classifiers.

RQ3: How sensitive is the performance of DEMAR to the

hyper-parameter values? This question aims at evaluating the

performance concerning different values of its hyper-parameters,

and tuning towards improved performance. Specifically, we employ

a greedy strategy for automatic hyper-parameter tuning, in order

to determine optimal values of hyper-parameters for achieving

promising results.

4.2 Dataset

The dataset used in this study contains issue report data extracted

from eight open-source projects, as summarized in Table 2. Specifi-

cally, we construct our RD and RA datasets and label ground truth,

through the following steps: (1) For each project, we randomly

retrieve the equal amount of positive instances (issue reports which

are labeled as “feature request” or “enhancement” in project reposi-

tories) and negative instances, and remove the instances without

any natural language descriptions; (2) We manually inspect the

labels, and correct 29 mis-classified requirements from negative

instances into positive instances; (3) For each issue report, we man-

ually label the sentences with the pre-defined seven categories. To

guarantee the correctness of the labeling results, an inspection team

with two senior researchers and two PhD students jointly work

in this process. Once different labeling opinions arise, the final re-

sult is determined based on a team discussion and majority voting

mechanism. In total, there are 1,067 issue reports (IR), including 573

requirements (R), and 494 non-requirements (NR) issues in the RD

and RA dataset. The RA dataset includes the sentences taken from

the 1,067 issue reports, as well as their corresponding categories

introduced earlier in Table 1.

Table 2: The Statistics of RD Dataset and RA Dataset

project #IR
RD dataset RA dataset

#R/NR #INT #CB #BE #DR #EXA #EXP #TRI

ActiveMq 125 65/60 56 80 16 18 13 116 29

Archiva 83 42/41 65 63 3 8 6 70 7

Aspectj 191 97/94 126 147 22 20 19 301 44

HDFS 162 104/58 112 90 34 20 11 132 8

Hibernate ORM 175 89/86 108 99 18 6 13 259 21

Log4j 120 61/59 67 84 18 6 32 150 15

Mopidy 114 65/49 56 55 18 3 15 71 9

SWT 97 50/47 50 74 4 5 9 120 12

TOTAL 1067 573/494 640 692 133 86 118 1219 145

4.3 Experiment Design

4.3.1 Benefit analysis of MTL (RQ1). To answer RQ1, we first con-

figure DEMAR into three working modes. One is multitask learning

mode (i.e., DEMAR). Two are its single task learning modes, i.e., sin-

gle RD task (𝐷𝐸𝑀𝐴𝑅𝑆𝑅𝐷) and single RA task (𝐷𝐸𝑀𝐴𝑅𝑆𝑅𝐴). Then,
we conduct experiments to compare the performances among the

three modes. To train the two single task learning modes, we use

the single task view of the dataset, i.e., RD-view with only RD labels

and RA-view with only RA labels, to train the two corresponding

𝐷𝐸𝑀𝐴𝑅𝑆𝑅𝐷 model and 𝐷𝐸𝑀𝐴𝑅𝑆𝑅𝐴 model, respectively. Then, we

conduct 10-fold cross validation on the RD and RA dataset. Finally,

the performances are compared among the three modes to investi-

gate whether multitask learning mode outperform either single task

learning mode. Note that, for the RA task, the 10-fold cross valida-

tion is conducted on the whole dataset, i.e., including sentences in

both requirements and non-requirements issues. However, in order

to evaluate performances on RA task, we only calculate the evalua-

tion metrics on the subset of sentences in requirements. This is to

avoid the side-effect RA prediction of DEMAR on non-requirements

instances, and we will discuss more in Section 6.2.

4.3.2 Baseline Comparison (RQ2). To answer RQ2, we select a set of

eight comparison baselines, including two state-of-art approaches,

i.e., CNN-based Classifier (CNC) and Rule-based Classifier (FRA),

as primary baselines, and six popular text classification approaches

to compare their performances with DEMAR. Specifically, CNC

is used to compare the performance of DEMAR in the RD task,

and FRA is used to compare in RA task. In addition, we implement

six additional classifiers to support both RD and RA tasks, so that

they can be used to compare with DEMAR in both RD and RA

tasks. The details of the baselines are presented in Section 4.4.

The performance for each baseline is evaluated using 10-fold cross

validation. Similar to RQ1, in order to evaluate performances on

the RA task, we only calculate the evaluation metrics on the subset

of sentences in requirements.

4.3.3 Hyper-parameter Sensitivity Analysis (RQ3). As introduced

in Section 3.3.2, there are three hyper-parameters in DEMAR. To

answer RQ3, we design a step-wise tuning experiment to automati-

cally tune their values respectively. First, we tune the dimension

of hidden vector, with the other two hyper-parameters fixed at

default values (i.e., 64 for batch_size and 0.5 for 𝜆). Specifically, we
enumerate the dimension of hidden vector ℎ𝑖 with values in the
range of [32, 64, 96, 128, 160, 192, 224, 256, 512, 1024], and train

the model. Among all the candidate dimensions, we choose the one

whose corresponding model achieves the best performance on the

test set. Second, tune the batch size hyper-parameter. Following a

similar enumeration approach, we experiment each value in the

set [1, 2, 4, 8, 16, 32, 64, 128, 256, 512], with the optimal dimension

of hidden vector identified from the previous step, as well as the

default value of 𝜆. Among all the candidate batch sizes, we choose
the one whose corresponding model achieves the best performance

on the test set. Last, tune 𝜆. The optimal values for the other two
hyper-parameters are applied in this step, and we experiment val-

ues of 𝜆 from the range of 0.1 to 0.9 with an increased delta of 0.1

in each round. The value which leads to a corresponding model

that achieves the best performance will be selected as the optimal

341

value. Following this greedy strategy, the performance of DEMAR

under different hyper-parameter combinations is evaluated, and

the hyper-parameter values producing the best performance are

selected and used in DEMAR.

4.4 Baselines

To evaluate the performance of DEMAR, we choose the following

approaches as comparison baselines.

CNN-based Classifier (CNC). This is the latest state-of-art

approach for intent mining, proposed by Huang et al. [18]. CNC

is based on the convolution neural network (CNN) to automati-

cally classify sentence label to be one of seven pre-defined intent

categories (“Information Giving”, “Information Seeking”, “Feature

Request”, “Solution Proposal”, “ProblemDiscovory”, “Aspect Evalua-

tion”, and “Meaningless”). If a sentence is classified into the “Feature

Request” category, the issue report which the sentence belongs to

is considered as a requirement. It is used as the primary baseline

for comparison in the RD task. In our experiment, we predict the

label of each sentence using the trained model [59], and classify an

issue report as a requirement if at least one of its sentences has a

label of “Feature Request”.

Rule-based Classifier (FRA). This is the state-of-art approach

to requirements annotation, proposed by Shi et al. [51]. FRA is

built upon a fuzzy method and natural language processing to

automatically classify the content of feature requests according to

six pre-defined categories, including “Intent”, “Benefit”, “Drawback”,

“Example”, “Explanation”, and “Trivia”. It is used as the primary

baseline for comparison in the RA task. We apply the FRA classifier

by using the source code provided by the authors.

Machine-learning-based Classifiers. Besides the above two

primary baselines, we additionally introduce six text classification

algorithms as baselines to provide more comprehensive perspec-

tives of comparison. These classification algorithms are also widely

used in previous studies [13, 18, 23]. The six classification algo-

rithms are applied for RD and RA tasks separately. Logistic Regres-

sion (LR) [28] is a statistical method that is employed to conduct

appropriate regression analysis when the dependent variable is

binary. Naive Bayesian (NB) [33] is a simple generation model for

text classification based on bag-of-words assumptions and Bayesian

rules. It conducts the joint probability of a sentence through prior

probability and conditional probability learned by the model and

training data. Then, given a sentence, it can deduce the probabili-

ties of all the taxonomies. Random Forest (RF) [30] is an ensemble

machine learning method that is constructed with several trees,

and each tree can contribute to the final classification result. Sup-

port Vector Machine (SVM) [60] is a supervised machine learning

algorithm that can be used for both classification and regression

purposes, which is a non-binary linear classifier. TextCNN [25] is

the convolutional neural network for text classification, and it is a

useful deep learning algorithm for many natural language process

tasks such as sentiment analysis and question classification. Tex-

tRNN [26] is the recurrent neural network for text classification,

where the connections between nodes form a directed graph along

a text sequence.

4.5 Evaluation Metrics

We use four commonly-used measurements to evaluate the per-

formance, i.e., Accuracy, Precision, Recall, F1. (1) Accuracy is the

proportion of sentences which are correctly classified among all

sentences. It is used as the overall evaluation metric for the RA

task. (2) Precision, which refers to the ratio of the number of correct

predictions to the total number of predictions; (3) Recall, which

refers to the ratio of the number of correct predictions to the total

number of samples in the golden test set; and (4) F1, which is the

harmonic mean of precision and recall.

5 RESULTS

This section presents the evaluation results in order to answer the

research questions.

5.1 Benefit of MTL (RQ1)

Figure 5 (a) illustrates the performance comparison between DE-

MAR and its single task learning mode (𝐷𝐸𝑀𝐴𝑅𝑆𝑅𝐷) for RD task,

in terms of precision, recall, and F1. It is clear that DEMAR outper-

forms its single task mode across all metrics. The improvements on

the precision, recall, and F1-score are 5%, 4%, and 4% respectively.

These increases are directly attributed to the benefits associated

with the internal jointly learning setup of DEMAR, i.e., learning

RD task simultaneously with a counterpart RA task.

(a) (b)

Figure 5: Comparison of different learning modes

Figure 5 (b) shows the performance comparison results between

DEMAR and its single task learning mode, i.e., 𝐷𝐸𝑀𝐴𝑅𝑆𝑅𝐴 . As
introduced earlier, the RA task is a multi-label classification task

containing seven categories of sentences. Therefore, we compare

the overall accuracy (Acc.) and F1 across the seven sentence cate-

gories, as indicated in the horizontal axis. Significant increases in

the performance of DEMAR can be observed in 4 of the 8 metrics,

i.e., accuracy and F1 in three categories including "Intent (INT)",

"Current Behavior (CB)" and "Benefits (BE)". More specifically, the

overall accuracy is increased by 7.7%, i.e., from 75.6% to 83.3%, and

the F1 in the three categories including "Intent (INT)", "Current

Behavior (CB)" and "Benefits (BE)" are increased by 14%, 12%, and

10%, respectively. Compared to the three categories, the F1 values

for the "Explanation (EXP)" and "Example (EXA)" categories have

342

less improvement, and remains the same for the other two cate-

gories, i.e., "Drawback (DR)" and "Trivia (TRI)". The reason of better

performances in INT, CB, and BE categories is that, these categories

are more discriminative between requirement and non-requirement

reports. Thus, incorporating the prediction results from the RD task

would contribute potential confidences to annotate those tags in

the RA task by joint learning.

Answers to RQ1: Compared with its alternative single task

learningmodes, themultitask learningmode of DEMAR can achieve

higher performance. On average, DEMAR increases the perfor-

mance of the single RD task by 4% in F1, and the performance of

the single RA task by 8% of in overall accuracy.

5.2 Baseline Comparison (RQ2)

As introduced in Section 4.4, two sets of baseline approaches are

selected for comparing with the proposed DEMAR in RD and RA

tasks. We will present the comparison results next.

Figure 6: Comparison in RD task

Performance comparison in RD task: Figure 6 shows the

precision, recall, and F1 achieved by DEMAR, compared with the-

state-of-art approach CNC, and six other popular classifiers. It is

easy to observe that DEMAR achieves the highest performance in all

three metrics. CNC is the second-best performer, only its precision

slightly worse than the random forest (RF) classifier. The results

indicate that DEMAR outperforms all seven baseline approaches,

including the state-of-art CNC approach and six popular text clas-

sifiers. This is attributed to the benefits of multitask learning, i.e.,

by leveraging additional information that can only be learned in

a jointly learning setting. More specifically, the model learns a

better-shared representation (the hidden vector ℎ𝑖) by multitask
learning, which implicitly boosts the performance of the RD task,

even compared with the latest state-of-art CNC approach.

Performance comparison in RA task: Table 3 summarizes

the comparison results of overall accuracy and F1 across seven cat-

egories among DEMAR, FRA, and six popular classifiers. It shows

that DEMAR achieves the highest overall accuracy, i.e., with a 1.8%

increase than that of FRA baseline. In addition, DEMAR also has the

highest performances in four categories including "Intent (INT)",

"Current Behavior (CB)", "Explanation (EXP)", and "Trivia (TRI)".

It is observed that FRA also achieves relatively good performance

Table 3: Comparison in RA task

Approach
F1

Accuracy
INT BE DR EXP EXA TRI CB

DEMAR 91.4% 76.2% 68.9% 87.2% 69.7% 88.0% 91.5% 83.3%

FRA 87.5% 84.9% 83.0% 83.0% 80.5% 82.0% NA 81.5%

LR 70.5% 48.6% 56.8% 57.4% 71.0% 79.2% 77.4% 68.6%

NB 70.0% 45.7% 57.6% 46.7% 73.5% 79.0% 76.8% 69.4%

RF 75.9% 64.4% 72.5% 54.0% 60.4% 80.0% 78.5% 72.0%

SVM 75.8% 59.4% 69.4% 57.4% 71.8% 74.1% 77.9% 75.7%

TEXTCNN 74.9% 51.5% 61.7% 67.2% 54.9% 83.8% 78.0% 73.2%

TEXTRNN 57.7% 38.0% 58.5% 61.0% 53.4% 82.0% 47.3% 58.3%

in the RA task. This is because it is a rule-based approach, which

may be more effective, but building those fuzzy rules require extra

involvement of requirements experts. Considering DEMAR is a

fully automated, learning-based approach, we believe the compar-

ison result demonstrates DEMAR is sufficiently effective in com-

paring with and potential as replacement of manual expert effort.

Compared with the other six learning-based classifiers, DEMAR

is 7.6%-25% higher in terms of accuracy. Such improvement may

benefit from the data augmentation and eavesdropping mechanism,

thus making the learning process more effective.

Performance comparison across eight individual projects:

Table 4 summarizes the performance comparison results across

eight individual projects, among DEMAR and all baselines. The

comparison is conducted in the RD and RA tasks, respectively. The

“approach” column lists the corresponding baselines, as mentioned

above and in Section 4.4. For RD task, DEMAR achieves the highest

F1 in most (5/8) of the individual projects, and the highest average

of F1 (85%) among all the eight projects. For RA task, DEMAR

achieves the highest accuracy (83%) on average, and also the highest

accuracy on 4 of the 8 projects, while FRA is the highest on other

three project, and TextCNN is the highest on one project.

Answers to RQ2: On average, DEMAR outperforms all selected

baselines in RD and RA tasks, which indicates the advantages of

the proposed approach.

5.3 Hyper-parameter Sensitivity Analysis(RQ3)

(a) LSTM Dimension (b) Batch size (c) Lamda

Figure 7: Results of hyper-parameter tuning

Figure 7 (a) shows the variation of DEMAR’s performance under

different values for the first hyper-parameter, i.e., the dimension

of the hidden vector. It is clear that DEMAR produces the best

performance for both tasks, when the value of this hyper-parameter

ℎ𝑖 is set as 256. Therefore, this is identified as the optimal value

343

Table 4: Summary of baseline comparison across eight projects

Task Name Approach ActiveMq Archiva Aspectj HDFS Hibernate Log4j Mopidy SWT Avg.

RD (F1)

DEMAR 84% 72% 78% 88% 95% 83% 94% 82% 85%

CNC 80% 65% 73% 85% 89% 85% 88% 83% 81%

LR 71% 72% 55% 80% 82% 80% 75% 73% 74%

NB 69% 74% 52% 70% 75% 70% 73% 79% 70%

RF 75% 77% 75% 83% 82% 86% 84% 68% 79%

SVM 79% 77% 76% 85% 92% 78% 82% 75% 81%

TEXTCNN 78% 60% 68% 80% 85% 83% 85% 80% 77%

TEXTRNN 65% 63% 62% 73% 76% 84% 61% 66% 69%

RA (Accuracy)

DEMAR 80% 82% 79% 88% 86% 76% 82% 88% 83%

FRA 83% 77% 80% 85% 87% 72% 73% 86% 80%

LR 67% 52% 69% 72% 64% 59% 66% 79% 66%

NB 62% 58% 60% 80% 59% 55% 61% 72% 63%

RF 78% 70% 65% 77% 68% 68% 78% 75% 72%

SVM 82% 68% 70% 82% 59% 57% 69% 79% 71%

TEXTCNN 72% 70% 79% 77% 65% 79% 76% 87% 76%

TEXTRNN 53% 55% 62% 70% 72% 65% 60% 72% 64%

of ℎ𝑖 , which is used in training DEMAR. Figure 7 (b) shows the

variation of DEMAR’s performance under different values for the

second hyper-parameter, i.e., batch_ size. It is observed that the

value of 32 leads to the highest performances of DEMAR on both

tasks, we chose 32 as the value of the batch_size parameter. Figure

7 (c) shows that the imbalanced sharing of the two loss functions

(𝐿𝑜𝑠𝑠𝑅𝐷 and 𝐿𝑜𝑠𝑠𝑅𝐴) could result in performance decreasing on

either RA task or RD task. The curves show that if the 𝜆 is smaller
than 0.5, the performance of the RD task decreases. If the 𝜆 is larger
than 0.5, the performance of the RA task decreases. It indicates that

in this study, a balanced weight sharing loss function could achieve

the best performance on both related tasks. Therefore, we choose

the value 0.5 as the parameter value of 𝜆. Finally, the combination
of the three values is selected as the tuned parameter values and

used to train DEMAR, whose promising performance has been

demonstrated in previous sections for answering RQ1 and RQ2.

Answers to RQ3: DEMAR employs a greedy strategy and en-

ables automatic tuning-up of its hyper-parameters, which enables

the identification of the best parameter values to achieve its promis-

ing performance.

6 DISCUSSION

6.1 Advantages of Deep MTL

Results in the previous section demonstrate that, leveraging deep

MTL, DEMAR outperforms existing baselines as well as its single

task learning modes, in both requirements analysis tasks (i.e., RD

and RA). This confirms findings in most studies on MTL’s applica-

tions [6, 72]. Besides the explicit data augmentation phase in DE-

MAR, we believe that other implicit augmentation characteristics

of MTL also contributes to the increased prediction performance.

First, the shared layer learning, as detailed in Section 3.2.2 and

Section 3.2.3, allows simultaneously processing related tasks and

introducing extra information to each single task. Second, consid-

ering that there are different noise patterns in RD and RA dataset,

DEMAR can leverage the MTL-based model to mitigate and balance

extreme noise and focus more on shared features that matter. Third,

the principled loss function in DEMAR allows the MTL model to

eavesdrop the information from other tasks and learns features

which are easy to capture by other tasks but difficult by itself. All

these characteristics of MTL jointly contribute to the increased per-

formance when simultaneously learning RD and RA classification

tasks.

6.2 Side-effect Prediction

Existing RA methods focus on requirements annotation, therefore,

only take requirements (R) as inputs. Unlike these, DEMAR can also

take non-requirements (NR) types of issues as inputs, and produce a

set of predicted RA labels. In another word, even if an issue is a NR,

i.e., a negative RD instance, DEMAR can still learn and generate

its sentence-level annotations. This kind of side-effect prediction

may sound chaotic or confusing, as NRs are not valid requirements

and can not get sentence-level RA labels. (Recall in Section 4.3,

this study only takes requirements instances into account when

evaluating the performance of RA task.)

However, there are certain frequent cases that such side informa-

tion may be beneficial to developer activities such as bug resolution

or information sharing. Consider the large variety of topics devel-

opers/users are communicating through issue repositories. Besides

submitting a requirement, they often discuss other types of NR

issues, such as reporting a bug, fixing a bug, asking for help, sched-

uling a task, etc [15, 74]. Based on our previous observations and

experiences from the eight open-source projects, the annotation

categories in DEMAR, as listed in Table 1, seems widely general-

izable in covering and representing sentences in NR issues. For

example, most bug reports contain sentences describing the “cur-

rent behavior”, “drawback”, or “intent” (a.k.a expected behavior);

typical ask-for-help issues may contain sentences related to some

“example” and/or “explanation”. In these cases, the side-effect pre-

diction in DEMAR can be used as issue annotation (IA) to highlight

important sentences with corresponding labels, and improves the

efficiency in issue resolution.

We conduct a further analysis to compare and understand the

overall performance of DEMAR in not only RA, but also IA. In this

analysis, we take into consideration of the side-effect prediction of

the NR instances. More specifically, we first calculate the F1 and

accuracy using NR instances from the test data, and then do the

344

Table 5: Performance with side-effect prediction

TASK
F1

Accuracy
INT BE DR EXP EXA TRI CB

RA (R) 91.4% 76.2% 68.9% 87.2% 69.7% 88.0% 91.5% 83.3%

IA (NR) 83.6% 72.9% 88.6% 86.2% 72.5% 91.0% 92.1% 83.5%

IA (R+NR) 88.7% 75.3% 81.3% 86.9% 70.2% 89.3% 91.7% 83.4%

same using both R and NR instances from the test data. As shown

in Table 5, DEMAR can achieve 83.6% and 92.1% F1 on the “Intent”

and “Current Bahevior” sentences respectively. Besides, DEMAR

also achieves relatively good performances on other types, with the

overall accuracy of 83.5%. Moreover, the F1 of “Drawback” increases

20% when applying on the NR dataset, mainly due to there are

more “Drawback” sentences in bug reports. The results indicate that

DEMAR has the potential to benefit the issue resolution process.

6.3 Adaptability for Different Data Sources

Although the evaluation of DEMAR is only conducted in RD and

RA tasks using issue reports, the potential to adapt and apply it to

handling other data sources is abundant. No matter what sources

or format the data comes from, people tend to express their de-

sired features in a relatively consistent way. For example, people

frequently use similar expressions such as “need implement sth. in

next release” and “sth. will be a solution/improvement”, to indicate

requirements in other resources such as chat messages, develop-

ment emails, etc. The proposed DEMAR approach can be adapted

to other data sources containing similar representative require-

ments. Besides, DEMAR can also be applied to handle different

languages since DEMAR does not make use of language-related

features to train the model. When switching to other languages,

DEMAR users only need to apply additional pre-processing accord-

ing to the specific language, e.g., switch to the BERT trained by the

specific language corpus.

6.4 Relevance to Industry Practices

As a fully automated approach, DEMAR can be applied in support

different issue review and resolution scenarios. Our ongoing work

includes the implementation of DEMAR and develops a dialog bot

to continuously monitor Github issue reports, and automatically

analyze, classify, and alert developers about important requirements.

Such automated tool can be easily integrated with typical workflow

of software development teams.

6.5 Extension to Other MTL Applications

Current consensus is that MTL is applicable if there is consider-

able understanding of task relatedness [6], i.e., their similarity, re-

lationship, etc. The authors believe that, in the field of software

engineering (SE), there are a few related tasks that can readily take

advantage of MTL.

Bug Prediction Analysis. Bug prediction is one of the classic

SE topics, and existing research has proposed intensive methods,

models, and tools to address total bug prediction [17, 29, 46, 67], bug

classification [11, 16, 57], bug triage [3, 5, 21, 21, 27, 56], bug fixing

effort prediction [69], and so on. In these related tasks, textual bug

description documents are common key inputs. Nonetheless, each

different type of tasks may require additional information, which

can be shared in a multitask learning setting to avoid individual

representation bias and improve joint learning performance. This

would be an potential topic for further exploration.

Commit Message Analysis. Another possible extension is to

explore MTL in commit message analysis, which is essential to

many SE tasks such as commit classification [45, 68], commit-issue

linking [43, 54], commit review recommendation [1, 14, 65], etc. In

this case, the common textual inputs are commit messages, followed

by other commit meta-data such as author, files included, and the

commit diff, etc. Similarly, the SE field has developed intensive

understanding of each individual task, using most of the leading

machine learning techniques, the additional exploration of MTL

seems to be promising.

6.6 Limitations

Nonetheless, there are several limitations to this study. The first

limitation is the generalizability of the proposed approach. It is

only evaluated using eight open-source projects, which might not

be representative of closed-source projects and other open-source

projects. The results may be different if applied to other projects.

However, the dataset comes from four communities in eight differ-

ent fields. The variety of projects relatively reduce this threat.

The second limitation may come from data pre-processing to

remove the code snippets, patches, stack trace, and other technical

information from the natural language text. It is possible that the

natural language content is also removed from the text, which leads

to errors when evaluating the actual performance. To mitigate this,

we use the state-of-the-art tool [36] whose performance could reach

82% F1, which relatively alleviates the threats.

The third limitation relates to the fixed instance length. DEMAR

sets instance length as the fixed value 10, and truncates the ending

sentences if a instance has more than 10 sentences. It means that

DEMAR would discard the predictions to the truncated sentences

in the RA task. However, nearly all the instances have more than

10 sentences in our dataset. Thus, the not-available predictions

caused by truncation could be a small minority. Furthermore, when

applying our approach into other dataset, the instance length could

be variable and determined by statistics to minimize the threat.

The forth limitation relates to the suitability of evaluation met-

rics. We utilize accuracy, precision, recall, and F1 to evaluate the

performance, in which we use the document labels and sentence

labels that are manually labeled as ground truth when calculating

the performance metrics. The threats can be largely relieved as all

the instances are reviewed and only the instances which reach the

agreement on are kept in our dataset.

7 RELATEDWORK

Our work is related to previous studies that focused on (1) re-

quirements discovery; and (2) requirements annotation. We briefly

review the recent studies in each category.

7.1 Requirements Discovery

This section reviews two typical categories of approaches (rule-

based approaches and learning-based approaches) for automated

requirements discovery.

345

7.1.1 Rule-based approaches. Di Sorbo et al. [52] proposed a tax-

onomy of intentions to classify sentences in developer mailing lists

into six categories: “Feature Request”, “Opinion Asking”, “Prob-

lem Discovery”, “Solution Proposal”, “Information Seeking”, and

“Information Giving”. They codified 36 linguistic rules for discov-

ering feature requests from emails, e.g., [someone] wants to have

[something].Morales-Ramirez et al. [37, 38] identified requirements-

related information in OSS issue discussion using 20 speech-act

rules supported by natural language processing techniques. Vlas

and Robinson [64] proposed a grammar-based design of software

automation for the discovery and classification of natural language

requirements found in open source projects repositories. Previous

rule-based approaches highly rely on the involvement of human ex-

pertise, which is labor-intensive and difficult to rebuild in practice.

While our work focuses on providing an advanced learning-based

solution to fully automated the discovery task.

7.1.2 Learning-based approaches. Arya et al. [4] identified 16 in-

formation types including potential new feature requests through

quantitative content analysis of 15 issue discussion threads. They

also provided a supervised classification solution by using Random

Forest with 14 conversational features that can classify sentences

expressing new feature requests with 0.66 F1-score. Rodeghero

et al. [34] presented an automated technique that extracted use-

ful information from the transcripts of developer-client spoken

conversations to construct user stories. They used machine learn-

ing classifiers to determine whether a conversation contains user

story information or not. Merten et al. [35] investigated natural lan-

guage processing and machine learning features to detect software

feature requests in issue tracking systems. Their results showed

that software feature requests detection can be approached on the

level of issues and data fields with satisfactory results. Antoniol

et al. [2] investigated whether the text of the issues posted in bug

tracking systems is enough to classify them into corrective mainte-

nance and other kinds of activities. They alternated among various

machine learning approaches such as decision trees, naive Bayes

classifiers, and logistic regression to distinguish enhancement apart

from other issues posted in the system. Maalej and Nabil [31] lever-

aged probabilistic techniques as well as text classification, natural

language processing, and sentiment analysis techniques to classify

app reviews into bug reports, feature requests, user experiences,

and ratings. Their results showed that the classification can reach

the precision between 70-95% and recall 80-90% actual results. Other

studies have been found to also capture user needs from app reviews

automatically [9, 22, 40, 61]. Huang et al. [18] found that Di Sorbo’s

work cannot be generalized to discussions in issue tracking systems,

and they addressed the deficiencies of Di Sorbo et al.’s taxonomy

by proposing a convolution neural network (CNN)-based approach.

In summary, most learning-based approaches rely on a set of pre-

defined features to train machine learning models for specific tasks.

While Huang et al. [18] took the first attempt to utilize deep learn-

ing techniques to avoid explicitly extract features, and yielding

significant improvements against Di Sorbo et al.’s rule-based ap-

proach and other nine commonly-used classification approaches.

Our work differs from existing learning-based approaches in that,

instead of using supervised training objectives on a single task, we

focus on exploring and utilizing the rich correlation information

between RD and its related RA tasks.

7.2 Requirements Annotation

Shi et al. [51] proposed 81 fuzzy rules that can classify sentences in

issues into six categories: “Intent”, “Benefit”, “Drawback”, “Exam-

ple”, “Explanation”, and “Trivia”. Their work designed to help ana-

lyzing real intents of feature requests, which can also expedite the

process of feature requests understanding. Our work extends their

categories by distilling “Current Behavior” from the “Explanation”

category. Moreover, we proposed amultitask learning approach that

can automated classify feature-request sentences in a better perfor-

mance. Vlas et al. [62] defined six levels of classification patterns

based on ontology rules, e.g., they used a subject-action-object

assertion to extract operability and expandability requirements.

Although the rules worked well with the 16 projects taken from

Sourceforge, it requires new rules to work effectively with new

datasets. Moreover, The ontology rules are codified by human ex-

pertise, which is labor-intensive and difficult to rebuild in practice.

In summary, existing requirements annotation studies are all

rule-based solutions, our work provides an effective learning-based

solution by jointly learning the RA task with the RD task that results

in better generalization performance than learning separately.

8 CONCLUSION AND FUTUREWORK

In this paper, we proposed a deep multitask learning approach, DE-

MAR, for requirements discovery and annotation. DEMAR consists

of three main phases: (1) data augmentation phase, for data prepa-

ration and allowing data sharing beyond single task learning; (2)

model construction phase, for constructing the MTL-based model

for requirements discovery and requirements annotation tasks; and

(3) model training phase, enabling eavesdropping by shared loss

function between the two related tasks.

Evaluation results from eight open-source projects show that:

(1) DEMAR outperforms all state-of-the-art approaches, i.e., with a

precision of 91% and a recall of 83% for requirement discovery task,

and an overall accuracy of 83.3% for requirement annotation task; (2)

By jointly learning the two tasks, the performance of discovery task

increases 4% of F1, and annotation task increases 8% of accuracy;

DEMAR provides a novel and effective way of learning two

related requirements analysis tasks. We believe that it also sheds

light on further directions in exploring the application of multitask

learning in solving other related software engineering problems.

Future directions include, but not limited to, further evaluation

DEMAR with more intensive data, implementation and integration

of DEMAR prototype with modern development environment such

as Github; applying and extending MTL-based approaches to not

only requirements tasks, but other types of software engineering

tasks, e.g., issue analysis, and so on.

ACKNOWLEDGMENT

This work is supported by the National Science Foundation of China

under grant No.61802374, No.61432001, No.61602450, the National

Key Research and Development Program of China under grant

No.2018YFB1403400, and China Merchants Bank.

346

REFERENCES
[1] Toufique Ahmed, Amiangshu Bosu, Anindya Iqbal, and Shahram Rahimi. 2017.

SentiCR: a customized sentiment analysis tool for code review interactions. In
Proceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017. 106–111.

[2] Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh, and
Yann-Gaël Guéhéneuc. 2008. Is It a Bug or an Enhancement?: a Text-based
Approach to Classify Change Requests. In Proceedings of the 2008 conference of
the center for advanced studies on collaborative research: meeting of minds. ACM,
23.

[3] John Anvik, Lyndon Hiew, and Gail C. Murphy. 2006. Who should fix this bug?.
In 28th International Conference on Software Engineering (ICSE 2006), Shanghai,
China, May 20-28, 2006. 361–370.

[4] Deeksha Arya, Wenting Wang, Jin L. C. Guo, and Jinghui Cheng. 2019. Analysis
and detection of information types of open source software issue discussions.
In Proceedings of the 41st International Conference on Software Engineering, ICSE
2019, Montreal, QC, Canada, May 25-31, 2019. 454–464.

[5] Gerald Bortis and André van der Hoek. 2013. PorchLight: a tag-based approach
to bug triaging. In 35th International Conference on Software Engineering, ICSE
’13, San Francisco, CA, USA, May 18-26, 2013. 342–351.

[6] R Caruana. 1997. Multitask Learning. Machine Learning 28, 1 (1997), 41–75.
[7] Rich Caruana. 1998. Multitask Learning. In Learning to Learn. 95–133.
[8] Jane Cleland-Huang, Horatiu Dumitru, Chuan Duan, and Carlos Castro-Herrera.

2009. Automated support for managing feature requests in open forums. Commun.
ACM 52, 10 (2009), 68–74.

[9] Andrea Di Sorbo, Sebastiano Panichella, Carol V. Alexandru, Junji Shimagaki, Cor-
rado A. Visaggio, Gerardo Canfora, and Harald C. Gall. 2016. What Would Users
Change in My App? Summarizing App Reviews for Recommending Software
Changes. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. 499–510.

[10] Wei Fu, Tim Menzies, and Xipeng Shen. 2016. Tuning for software analytics: Is it
really necessary? Inf. Softw. Technol. 76 (2016), 135–146. https://doi.org/10.1016/
j.infsof.2016.04.017

[11] Baljinder Ghotra, Shane McIntosh, and Ahmed E. Hassan. 2015. Revisiting the
Impact of Classification Techniques on the Performance of Defect Prediction
Models. In 37th IEEE/ACM International Conference on Software Engineering, ICSE
2015, Florence, Italy, May 16-24, 2015, Volume 1. 789–800.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. The
MIT Press.

[13] Jiawei Han, Micheline Kamber, and Jian Pei. 2011. Data Mining: Concepts and
Techniques, 3rd edition. Morgan Kaufmann.

[14] Christoph Hannebauer, Michael Patalas, Sebastian Stünkel, and Volker Gruhn.
2016. Automatically recommending code reviewers based on their expertise: an
empirical comparison. In Proceedings of the 31st IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2016, Singapore, September 3-7, 2016.
99–110.

[15] Kim Herzig, Sascha Just, and Andreas Zeller. 2013. It’s not a bug, it’s a fea-
ture: How Misclassification Impacts Bug Prediction. In Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, 392–401.

[16] LiGuo Huang, Vincent Ng, Isaac Persing, Ruili Geng, Xu Bai, and Jeff Tian. 2011.
AutoODC: Automated generation of Orthogonal Defect Classifications. In 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE 2011),
Lawrence, KS, USA, November 6-10, 2011. 412–415.

[17] Qiao Huang, Xin Xia, and David Lo. 2019. Revisiting supervised and unsuper-
vised models for effort-aware just-in-time defect prediction. Empirical Software
Engineering 24, 5 (2019), 2823–2862.

[18] Qiao Huang, Xin Xia, David Lo, and Gail C. Murphy. 2018. Automating Intention
Mining. IEEE Transactions on Software Engineering PP, 99 (2018), 1–1.

[19] huggingface. 2020. https://github.com/huggingface/transformers.
[20] Eric Hulburd. 2020. Exploring BERT Parameter Efficiency on the Stanford Ques-

tion Answering Dataset v2.0. CoRR abs/2002.10670 (2020).
[21] Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. 2009. Improving bug

triage with bug tossing graphs. In Proceedings of the 7th joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2009, Amsterdam, The Nether-
lands, August 24-28, 2009. 111–120.

[22] Nishant Jha and Anas Mahmoud. 2017. Mining User Requirements from Applica-
tion Store Reviews Using Frame Semantics. (2017), 273–287.

[23] Tian Jiang, Lin Tan, and Sunghun Kim. 2013. Personalized defect prediction. In
2013 28th IEEE/ACM International Conference on Automated Software Engineering,
ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013. 279–289.

[24] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882 (2014).

[25] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a
Special Interest Group of the ACL. 1746–1751.

[26] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Recurrent Convolutional
Neural Networks for Text Classification. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA.
2267–2273.

[27] Sun-Ro Lee, Min-Jae Heo, Chan-Gun Lee, Milhan Kim, and Gaeul Jeong. 2017.
Applying deep learning based automatic bug triager to industrial projects. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017. 926–931.

[28] Stanley Lemeshow, David W Hosmer, and Wiley. 2000. Applied logistic regression.
J. Wiley.

[29] Zhiqiang Li, Xiao-Yuan Jing, Xiaoke Zhu, Hongyu Zhang, Baowen Xu, and Shi
Ying. 2019. Heterogeneous defect prediction with two-stage ensemble learning.
Autom. Softw. Eng. 26, 3 (2019), 599–651.

[30] Andy Liaw, Matthew Wiener, et al. 2002. Classification and regression by ran-
domForest. R news 2, 3 (2002), 18–22.

[31] Walid Maalej and Hadeer Nabil. 2015. Bug report, Feature request, or Simply
Praise? on Automatically Classifying App Reviews. In 2015 IEEE 23rd international
requirements engineering conference (RE). IEEE, 116–125.

[32] Harish Tayyar Madabushi, Elena Kochkina, and Michael Castelle. 2020. Cost-
Sensitive BERT for Generalisable Sentence Classification with Imbalanced Data.
CoRR abs/2003.11563 (2020).

[33] Andrew McCallum, Kamal Nigam, et al. 1998. A comparison of event models
for naive bayes text classification. In AAAI-98 workshop on learning for text
categorization, Vol. 752. Citeseer, 41–48.

[34] Collin Mcmillan, Collin Mcmillan, Collin Mcmillan, and Collin Mcmillan. 2017.
Detecting User Story Information in Developer-client Conversations to Gen-
erate Extractive Summaries. In Ieee/acm International Conference on Software
Engineering. 49–59.

[35] ThorstenMerten,Matúš Falis, Paul Hübner, Thomas Quirchmayr, Simone Bürsner,
and Barbara Paech. 2016. Software Feature Request Detection in Issue Tracking
Systems. In Requirements Engineering Conference (RE), 2016 IEEE 24th International.
IEEE, 166–175.

[36] Thorsten Merten, Bastian Mager, Simone Bürsner, and Barbara Paech. 2014. Clas-
sifying unstructured data into natural language text and technical information. In
11th Working Conference on Mining Software Repositories, MSR 2014, Proceedings,
May 31 - June 1, 2014, Hyderabad, India, Premkumar T. Devanbu, Sung Kim, and
Martin Pinzger (Eds.). ACM, 300–303.

[37] Itzel Morales-Ramirez, Fitsum Meshesha Kifetew, and Anna Perini. 2017. Analy-
sis of Online Discussions in Support of Requirements Discovery. In Advanced
Information Systems Engineering. 159–174.

[38] Itzel Morales-Ramirez, Fitsum Meshesha Kifetew, and Anna Perini. 2018. Speech-
acts based analysis for requirements discovery from online discussions. Informa-
tion Systems (2018).

[39] Li Mu. 2014. Efficient Mini-batch Training for Stochastic Optimization. In Acm
Sigkdd International Conference on Knowledge Discovery & Data Mining.

[40] Fabio Palomba, Mario Linares Vásquez, Gabriele Bavota, Rocco Oliveto, Massim-
iliano Di Penta, Denys Poshyvanyk, and Andrea De Lucia. 2015. User Reviews
Matter! Tracking Crowdsourced Reviews to Support Evolution of Successful Apps.
In 2015 IEEE International Conference on Software Maintenance and Evolution,
ICSME 2015, Bremen, Germany, September 29 - October 1, 2015. 291–300.

[41] Paras. 2014. Stochastic Gradient Descent. Optimization (2014).
[42] Jinfeng Rao, Ferhan Türe, and Jimmy Lin. 2018. Multi-Task Learning with Neural

Networks for Voice Query Understanding on an Entertainment Platform. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018. 636–645.

[43] Hang Ruan, Bihuan Chen, Xin Peng, and Wenyun Zhao. 2019. DeepLink: Recov-
ering issue-commit links based on deep learning. J. Syst. Softw. 158 (2019).

[44] Sebastian Ruder. 2017. An overview of multi-task learning in deep neural net-
works. arXiv preprint arXiv:1706.05098 (2017).

[45] Antonino Sabetta andMichele Bezzi. 2018. A Practical Approach to the Automatic
Classification of Security-Relevant Commits. In 2018 IEEE International Conference
on Software Maintenance and Evolution, ICSME 2018, Madrid, Spain, September
23-29, 2018. 579–582.

[46] Ripon K. Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E. Perry. 2013.
Improving bug localization using structured information retrieval. In 2013 28th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2013,
Silicon Valley, CA, USA, November 11-15, 2013. 345–355.

[47] G. Salton, A. Wong, and C. S. Yang. 1975. A vector-space model for information
retrieval. Communications of the Acm 18, 11 (1975), 13–620.

[48] Walt Scacchi. 2002. Understanding the requirements for developing open source
software systems. IEE Proceedings - Software 149, 1 (2002), 24–39.

[49] Abhinav Sethy and Bhuvana Ramabhadran. 2008. Bag-of-word normalized n-
gram models. In Ninth Annual Conference of the International Speech Communi-
cation Association.

[50] Lin Shi, Celia Chen, Qing Wang, Shoubin Li, and Barry W. Boehm. 2017. Under-
standing feature requests by leveraging fuzzy method and linguistic analysis. In
Proceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017. 440–450.
https://doi.org/10.1109/ASE.2017.8115656

347

[51] Lin Shi, Celia Chen, Qing Wang, Shoubin Li, and Barry W Boehm. 2017. Under-
standing feature requests by leveraging fuzzy method and linguistic analysis.
automated software engineering (2017), 440–450.

[52] Andrea Di Sorbo, Sebastiano Panichella, Corrado Aaron Visaggio, Massim-
iliano Di Penta, Gerardo Canfora, and Harald C. Gall. 2015. Development
Emails Content Analyzer: Intention Mining in Developer Discussions (T). In
30th IEEE/ACM International Conference on Automated Software Engineering, ASE
2015, Lincoln, NE, USA, November 9-13, 2015. 12–23.

[53] Cong Sun and Zhihao Yang. 2019. Transfer Learning in Biomedical Named Entity
Recognition: An Evaluation of BERT in the PharmaCoNER task. In Proceedings
of The 5th Workshop on BioNLP Open Shared Tasks, BioNLP-OST@EMNLP-IJNCLP
2019, Hong Kong, China, November 4, 2019. 100–104.

[54] Yan Sun, Qing Wang, and Ye Yang. 2017. FRLink: Improving the recovery of
missing issue-commit links by revisiting file relevance. Inf. Softw. Technol. 84
(2017), 33–47.

[55] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. In Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Processing Systems 2014,
December 8-13 2014, Montreal, Quebec, Canada. 3104–3112.

[56] Ahmed Tamrawi, Tung Thanh Nguyen, Jafar M. Al-Kofahi, and Tien N. Nguyen.
2011. Fuzzy set-based automatic bug triaging. In Proceedings of the 33rd Interna-
tional Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA,
May 21-28, 2011. 884–887.

[57] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi
Matsumoto. 2016. Automated parameter optimization of classification techniques
for defect prediction models. In Proceedings of the 38th International Conference
on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016. 321–332.

[58] Sebastian Thrun. 1996. Is learning the n-th thing any easier than learning the
first?. In Advances in neural information processing systems. 640–646.

[59] tkdsheep. 2020. https://github.com/tkdsheep/Intention-Mining-TSE.
[60] Vladimir Naumovich Vapnik. 2000. The Nature of Statistical Learning Theory,

Second Edition. Springer.
[61] Lorenzo Villarroel, Gabriele Bavota, Barbara Russo, Rocco Oliveto, and Massimil-

iano Di Penta. 2016. Release Planning of Mobile Apps based on User Reviews. In
Proceedings of the 38th International Conference on Software Engineering. 14–24.

[62] Radu Vlas and William N. Robinson. 2011. A Rule-Based Natural Language Tech-
nique for Requirements Discovery and Classification. In in Open-Source Software
Development Projects. Proceedings of the 44th Hawaii International Conference on
Systems Science.

[63] Radu E. Vlas and William N. Robinson. 2011. A Rule-Based Natural Language
Technique for Requirements Discovery and Classification in Open-Source Soft-
ware Development Projects. In 44th Hawaii International International Conference

on Systems Science (HICSS-44 2011), Proceedings, 4-7 January 2011, Koloa, Kauai,
HI, USA. 1–10.

[64] Radu E Vlas and William N Robinson. 2012. Two Rule-based Natural Language
Strategies for Requirements Discovery and Classification in Open Source Soft-
ware Development Projects. Journal of management information systems 28, 4
(2012), 11–38.

[65] Min Wang, Zeqi Lin, Yanzhen Zou, and Bing Xie. 2019. CoRA: Decomposing and
Describing Tangled Code Changes for Reviewer. In 34th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2019, San Diego, CA, USA,
November 11-15, 2019. 1050–1061.

[66] Werner. [n.d.]. How do I Write a Good Feature Request. https:
//meta.stackexchange.com/questions/7656/how-do-i-write-a-good-answer-to-
a-question.

[67] Tingting Yu, Wei Wen, Xue Han, and Jane Huffman Hayes. 2019. ConPredictor:
Concurrency Defect Prediction in Real-World Applications. IEEE Trans. Software
Eng. 45, 6 (2019), 558–575.

[68] Sarim Zafar, Muhammad Zubair Malik, and Gursimran Singh Walia. 2019. To-
wards Standardizing and Improving Classification of Bug-Fix Commits. In 2019
ACM/IEEE International Symposium on Empirical Software Engineering and Mea-
surement, ESEM 2019, Porto de Galinhas, Recife, Brazil, September 19-20, 2019.
1–6.

[69] Hongyu Zhang, Liang Gong, and Steven Versteeg. 2013. Predicting bug-fixing
time: an empirical study of commercial software projects. In 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26,
2013. 1042–1051.

[70] Tianzhu Zhang, Bernard Ghanem, Si Liu, and Narendra Ahuja. 2012. Robust visual
tracking via multi-task sparse learning. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, Providence, RI, USA, June 16-21, 2012. 2042–2049.

[71] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015. Character-level Con-
volutional Networks for Text Classification. In Advances in Neural Information
Processing Systems 28: Annual Conference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec, Canada. 649–657.

[72] Yu Zhang and Qiang Yang. 2018. An overview of multi-task learning. National
Science Review v.5, 1 (2018), 34–47.

[73] Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Aligning Books and Movies: Towards
Story-like Visual Explanations by Watching Movies and Reading Books. CoRR
abs/1506.06724 (2015).

[74] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian
Schröter, and Cathrin Weiss. 2010. What Makes a Good Bug Report? IEEE Trans.
Software Eng. 36, 5 (2010), 618–643.

[75] Rodolfo Zunino and Paolo Gastaldo. 2002. Analog implementation of the SoftMax
function. In IEEE International Symposium on Circuits & Systems.

348

